Showing posts with label PHISICS. Show all posts
Showing posts with label PHISICS. Show all posts

Monday, July 9, 2012

SCIENCE / WORLD - HIGGS PARTICLE - NEWS UPDATE!


A Blip That Speaks of Our Place in the Universe


Cern European Pressphoto Agency

By LAWRENCE M. KRAUSS

Published: July 9, 2012

ASPEN, Colo. — Last week, physicists around the world were glued to computers at very odd hours (I was at a 1 a.m. physics “party” here with a large projection screen and dozens of colleagues) to watch live as scientists at the Large Hadron Collider, outside Geneva, announced that they had apparently found one of the most important missing pieces of the jigsaw puzzle that is nature.

The “Higgs particle,” proposed almost 50 years ago to allow for consistency between theoretical predictions and experimental observations in elementary particle physics, appears to have been discovered — even as the detailed nature of the discovery allows room for even more exotic revelations that may be just around the corner.

It is natural for those not deeply involved in the half-century quest for the Higgs to ask why they should care about this seemingly esoteric discovery. There are three reasons.

First, it caps one of the most remarkable intellectual adventures in human history — one that anyone interested in the progress of knowledge should at least be aware of.

Second, it makes even more remarkable the precarious accident that allowed our existence to form from nothing — further proof that the universe of our senses is just the tip of a vast, largely hidden cosmic iceberg.

And finally, the effort to uncover this tiny particle represents the very best of what the process of science can offer to modern civilization.

If one is a theoretical physicist working on some idea late at night or at a blackboard with colleagues over coffee one afternoon, it is almost terrifying to imagine that something that you cook up in your mind might actually be real. It’s like staring at a large jar and being asked to guess the number of jelly beans inside; if you guess right, it seems too good to be true.

The prediction of the Higgs particle accompanied a remarkable revolution that completely changed our understanding of particle physics in the latter part of the 20th century.

Just 50 years ago, in spite of the great advances of physics in the previous half century, we understood only one of the four fundamental forces of nature — electromagnetism — as a fully consistent quantum theory. In just one subsequent decade, however, not only had three of the four known forces succumbed to our investigations, but a new elegant unity of nature had been uncovered.

It was found that all of the known forces could be described using a single mathematical framework — and that two of the forces, electromagnetism and the weak force (which governs the nuclear reactions that power the sun), were actually different manifestations of a single underlying theory.

How could two such different forces be related? After all, the photon, the particle that conveys electromagnetism, has no mass, while the particles that convey the weak force are very massive — almost 100 times as heavy as the particles that make up atomic nuclei, a fact that explains why the weak force is weak.

What the British physicist Peter Higgs and several others showed is that if there exists an otherwise invisible background field permeating all of space, then the particles that convey some force like electromagnetism can interact with this field and effectively encounter resistance to their motion and slow down, like a swimmer moving through molasses.

As a result, these particles can behave as if they are heavy, as if they have a mass. The physicist Steven Weinberg later applied this idea to a model of the weak and electromagnetic forces previously proposed by Sheldon L. Glashow, and everything fit together.

This idea can be extended to the rest of particles in nature, including the protons and neutrons and electrons that make up the atoms in our bodies. If some particle interacts more strongly with this background field, it ends up acting heavier. If it interacts more weakly, if acts lighter. If it doesn’t interact at all, like the photon, it remains massless.

If anything sounds too good to be true, this is it. The miracle of mass — indeed of our very existence, because if not for the Higgs, there would be no stars, no planets and no people — is possible because of some otherwise hidden background field whose only purpose seems to be to allow the world to look the way it does.

Dr. Glashow, who along with Dr. Weinberg won a Nobel Prize in Physics, later once referred to this “Higgs field” as the “toilet” of modern physics because that’s where all the ugly details that allow the marvelous beauty of the physical world are hidden.

But relying on invisible miracles is the stuff of religion, not science. To ascertain whether this remarkable accident was real, physicists relied on another facet of the quantum world.

Associated with every background field is a particle, and if you pick a point in space and hit it hard enough, you may whack out real particles. The trick is hitting it hard enough over a small enough volume.

And that’s the rub. After 50 years of trying, including a failed attempt in this country to build an accelerator to test these ideas, no sign of the Higgs had appeared. In fact, I was betting against it, since a career in theoretical physics has taught me that nature usually has a far richer imagination than we do.

Until last week.

Every second at the Large Hadron Collider, enough data is generated to fill more than 1,000 one-terabyte hard drives — more than the information in all the world’s libraries. The logistics of filtering and analyzing the data to find the Higgs particle peeking out under a mountain of noise, not to mention running the most complex machine humans have ever built, is itself a triumph of technology and computational wizardry of unprecedented magnitude.

The physicist Victor F. Weisskopf — the colorful first director of CERN, the European Center for Nuclear Research, which operates the collider — once described large particle accelerators as the gothic cathedrals of our time. Like those beautiful remnants of antiquity, accelerators require the cutting edge of technology, they take decades or more to build, and they require the concerted efforts of thousands of craftsmen and women. At CERN, each of the mammoth detectors used to study collisions requires the work of thousands of physicists, from scores of countries, speaking several dozen languages.

Most significantly perhaps, cathedrals and colliders are both works of incomparable grandeur that celebrate the beauty of being alive.

The apparent discovery of the Higgs may not result in a better toaster or a faster car. But it provides a remarkable celebration of the human mind’s capacity to uncover nature’s secrets, and of the technology we have built to control them. Hidden in what seems like empty space — indeed, like nothing, which is getting more interesting all the time — are the very elements that allow for our existence.

By demonstrating that, last week’s discovery will change our view of ourselves and our place in the universe. Surely that is the hallmark of great music, great literature, great art ...and great science.


Tuesday, July 3, 2012

SCIENCE - WORLD - NEWS!

Best evidence yet found for 'God particle'

US physicists say they have come close to proving existence of Higgs boson days before European findings are out.
                          
 


If physicists can confirm the existence of Higgs boson, it will be the most important breakthrough in science [EPA]
US-based physicists reported finding strong hints of the Higgs boson, the elusive "God particle" believed to give objects mass, but said European data is needed to confirm any potential discovery.
If physicists can confirm the existence of the Higgs boson, the last missing piece in the standard model of physics, the announcement would rank among the most important scientific breakthroughs of the last century.
The final findings from Fermi National Accelerator Laboratory (Fermilab) in the midwestern US state of Illinois will be followed by the announcement of more definitive results from a potent European atom-smasher on Wednesday.
"Our data strongly point toward the existence of the Higgs boson, but it will take results from the experiments at the Large Hadron Collider in Europe to establish a discovery," said Fermilab spokesman Rob Roser.
The results come from 10 years of data from the Tevatron, a powerful atom-smasher that began its collider work in 1985 and closed down last year.
"During its life, the Tevatron must have produced thousands of Higgs particles, if they actually exist, and it's up to us to try to find them in the data we have collected," said Luciano Ristori, a physicist at Fermilab and Italy's National Institute for Nuclear Physics, or INFN.
"We have developed sophisticated simulation and analysis programs to identify Higgs-like patterns. Still, it is easier to look for a friend's face in a sports stadium filled with 100,000 people than to search for a Higgs-like event among trillions of collisions."

Difficult to pin down
The Higgs boson, named after Scottish physicist Peter Higgs, was first described in the 1960s and has been notoriously difficult to pin down.
"The Higgs boson is special," Fermilab theoretical physicist Joe Lykken told reporters, adding that the tough-to-find elementary particle "gets at why the universe is here in the first place."
Lykken said it can be thought of almost like an energy field that gives mass to objects. But it decays almost immediately into other particles.
Furthermore, just one in a trillion collisions in an atom-smasher experiment will produce a Higgs boson.
"This is much worse than a needle in a haystack," Lykken said, adding that he and many other physicists are eagerly anticipating the European results.
"We think we are getting very, very close to where we want to be, and by the end of the week we may be much closer."
The Tevatron results show that the Higgs particle, if it exists, has a mass between 115 and 135 gigaelectronvolts (GeV/c2), or about 130 times the mass of the proton.
Based on two experiments, known as CDF and DZero which include nearly 1,000 physicists from more than a dozen different countries, the team found that there is only a one-in-550 chance that the signal is a mere statistical fluke.
However, the statistical significance of the signal measures 2.9 sigma, and is not strong enough to meet the five sigma threshold required to say whether or not the particle has been discovered.
"We achieved a critical step in the search for the Higgs boson," said Dmitri Denisov, DZero spokesman and physicist at Fermilab.
"While 5-sigma significance is required for a discovery, it seems unlikely that the Tevatron collisions mimicked a Higgs signal. Nobody expected the Tevatron to get this far when it was built in the 1980s."
A more powerful machine at the European Center for Nuclear Research in December 2011 announced "tantalizing hints" that the sought-after particle was hiding inside a narrow range of mass.
CERN's Large Hadron Collider -- the world's largest atom-smasher, located along the French-Swiss border -- showed a likely range for the Higgs boson between 115 to 127 gigaelectronvolts.
US-based experiments echoed those findings in March 2012, though in a slightly larger range.
Now, the scientific community is eagerly anticipating the European results, expected at 0700 GMT on Wednesday from the CERN particle physics laboratory in Geneva, Switzerland.
"It is a real cliffhanger," said DZero spokesman Gregorio Bernardi, physicist at the Laboratory of Nuclear and High Energy Physics at the University of Paris VI and VII. "We are very excited about it."